CamemBERT is a state-of-the-art language model for French based on the RoBERTa architecture pretrained on the French subcorpus of the newly available multilingual corpus OSCAR.
We evaluate CamemBERT in four different downstream tasks for French: part-of-speech (POS) tagging, dependency parsing, named entity recognition (NER) and natural language inference (NLI); improving the state of the art for most tasks over previous monolingual and multilingual approaches, which confirms the effectiveness of large pretrained language models for French.
CamemBERT was trained and evaluated by Louis Martin, Benjamin Muller, Pedro Ortiz Suarez, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
CamemBERT is available in github.com/huggingface/transformers and https://github.com/pytorch/fairseq/
Model | #params | Download | Arch. | Training data |
---|---|---|---|---|
camembert / camembert-base |
110M | camembert-base.tar.gz | Base | OSCAR (138 GB of text) |
camembert-large |
335M | camembert-large.tar.gz | Large | CCNet (135 GB of text) |
camembert-base-ccnet |
110M | camembert-base-ccnet.tar.gz | Base | CCNet (135 GB of text) |
camembert-base-wikipedia-4gb |
110M | camembert-base-wikipedia-4gb.tar.gz | Base | Wikipedia (4 GB of text) |
camembert-base-oscar-4gb |
110M | camembert-base-oscar-4gb.tar.gz | Base | Subsample of OSCAR (4 GB of text) |
camembert-base-ccnet-4gb |
110M | camembert-base-ccnet-4gb.tar.gz | Base | Subsample of CCNet (4 GB of text) |
import torch
camembert = torch.hub.load('pytorch/fairseq', 'camembert')
camembert.eval() # disable dropout (or leave in train mode to finetune)
Download camembert model
wget https://dl.fbaipublicfiles.com/fairseq/models/camembert-base.tar.gz
tar -xzvf camembert-base.tar.gz
Load the model in fairseq
from fairseq.models.roberta import CamembertModel
camembert = CamembertModel.from_pretrained('./camembert-base/')
camembert.eval() # disable dropout (or leave in train mode to finetune)
masked_line = 'Le camembert est <mask> :)'
camembert.fill_mask(masked_line, topk=3)
# [('Le camembert est délicieux :)', 0.4909118115901947, ' délicieux'),
# ('Le camembert est excellent :)', 0.10556942224502563, ' excellent'),
# ('Le camembert est succulent :)', 0.03453322499990463, ' succulent')]
# Extract the last layer's features
line = "J'aime le camembert !"
tokens = camembert.encode(line)
last_layer_features = camembert.extract_features(tokens)
assert last_layer_features.size() == torch.Size([1, 10, 768])
# Extract all layer's features (layer 0 is the embedding layer)
all_layers = camembert.extract_features(tokens, return_all_hiddens=True)
assert len(all_layers) == 13
assert torch.all(all_layers[-1] == last_layer_features)
import torch
from transformers.modeling_camembert import CamembertForMaskedLM
from transformers.tokenization_camembert import CamembertTokenizer
def fill_mask(masked_input, model, tokenizer, topk=5):
# Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py
assert masked_input.count("<mask>") == 1
input_ids = torch.tensor(tokenizer.encode(masked_input, add_special_tokens=True)).unsqueeze(0) # Batch size 1
logits = model(input_ids)[0] # The last hidden-state is the first element of the output tuple
masked_index = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
logits = logits[0, masked_index, :]
prob = logits.softmax(dim=0)
values, indices = prob.topk(k=topk, dim=0)
topk_predicted_token_bpe = " ".join(
[tokenizer.convert_ids_to_tokens(indices[i].item()) for i in range(len(indices))]
)
masked_token = tokenizer.mask_token
topk_filled_outputs = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" ")):
predicted_token = predicted_token_bpe.replace("\u2581", " ")
if " {0}".format(masked_token) in masked_input:
topk_filled_outputs.append(
(
masked_input.replace(" {0}".format(masked_token), predicted_token),
values[index].item(),
predicted_token,
)
)
else:
topk_filled_outputs.append(
(masked_input.replace(masked_token, predicted_token), values[index].item(), predicted_token,)
)
return topk_filled_outputs
tokenizer = CamembertTokenizer.from_pretrained("camembert-base")
model = CamembertForMaskedLM.from_pretrained("camembert-base")
model.eval()
masked_input = "Le camembert est <mask> :)"
print(fill_mask(masked_input, model, tokenizer, topk=3))
If you use our work, please cite:
@inproceedings{martin2020camembert,
title={CamemBERT: a Tasty French Language Model},
author={Martin, Louis and Muller, Benjamin and Ortiz Su{\'a}rez, Pedro Javier and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
year={2020}
}
Copyright (c) 2020 - Inria and Facebook, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.